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The exponential family



Motivation

In the regression problem y|z;6 ~ N (u,0?)
In the classification problem vy|z;0 ~ Bernoulli(¢)

Whether these distributions can be uniformly represented?

If P has a a special form, then inference and learning come for free



The exponential family

= p(y;m) = b(y) exp(n' T(y) — a(n))

" y: data label (scalar)

" 77: natural parameter

= T(y): sufficient statistic

= b(y): base measure, depend on y, but not n (scalar)

= a(n): log partition function (scalar) 1=3"P(yin) = e > b(y)exp {n" T(y)}

— a(n) =log » _ b(y)exp {nT T(y)}



Example 1: Bernoulli distribution

= Bernoulli(¢®) P(y;7)

= p(y =

= p(y; P)

1;¢) =

= b(y) exp(n’ T(y) — a(n))

¢; ply =0;¢) =1—¢

¢'(1—¢) Y
exp(ylog ¢ + (1 — y) log(1 — ¢))
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Example 2: Gaussian distribution with g% = 1

« Gaussian(u, 1) p(y;n) = b(y) exp(n' T(y) — a(n))

p(y:f) = —=—exp (—%(y — u)2)
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Thus, we see that the Gaussian is in the exponential family, with
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b(y) = (1/vV2m)exp(—y?/2).



An observation

m  Notice that for a Gaussian with mean 1 we had

1
n=pT(y)=yan) ="
- We observe something peculiar:
Oya(n) =n = p=Ely] and dja(n) = 1 = 0 = var(y)
O

That is, derivatives of the log partition function is the expectation
and variance. Same for Bernoulli.

[ Is this true in general?




Log Partition Function

Yes! Recall that

a(n) = log Y _ b(y)exp {nT T(y)}

Then, taking derivatives

>, T(y)b(y)exp {n" T(y)}

S,ob()ep{(nT T(y)} E[T(y):n]

Vypa(n) =

Note: V%a(n) = var[T(y);n], you can check!

Takeaway: In this way, once we’re in the exponential family, we get
inference “for free” meaning in the same way for every member



Quiz: Gaussian distribution with g2

= Gaussian(u, g?) ?

p(y;n) = b(y) exp(n' T'(y) — a(n))
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Some Facts About Exponential Models

» There are many canonical exponential family models:

» Binary — Bernoulli

Multiple Classses — Multinomial
Real — Gaussian

Counts — Poisson

R, — Gamma, Exponential

» Distributions — Dirichlet

vvyyvyy

» In this course, we'll use T(y) =y.
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The GLMs
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Three assumptions/design choices

1. y | z; 0 ~ ExponentialFamily(n). Le., given z and 0, the distribution of
y follows some exponential family distribution, with parameter 7.

2. Given z, our goal is to predict the expected value of T'(y) given .
In most of our examples, we will have T'(y) = y, so this means we
would like the prediction h(x) output by our learned hypothesis h to
satisfy h(xz) = Ely|z]. (Note that this assumption is satisfied in the
choices for hg(x) for both logistic regression and linear regression. For
instance, in logistic regression, we had hy(z) = p(y = 1|x;0) =0 p(y =
Oz;0) +1- p(y = 1|z;0) = E[y|=; 6].)

3. The natural parameter n and the inputs z are related linearly: n = 67z. - _
(Or, if n is vector-valued, then n; = 0 x.)
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How linear regression belongs to GLMs?

= Consider the label y~N(u, 0%)

he (.’]3) — E[y|£c, 9] Assumption 2
= M Gaussian distribution
— 77 Assumption 1
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Assumption 3
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How logistic regression belongs to GLMs?

= Consider the label y~Bernoulli(¢)

he (.CE) — E[ylx, 9] Assumption 2
— ¢ Bernoulli distribution
— 1/(1 + 6—77) Assumption 1

= 1/(1+ e—HT:c) Assumption 3

" Another reason for the definition of logistic regression
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Workflow of GLMs

= Model formulation

Model Parameter Natural Parameter Canonical
¢ : Bernoulli

07 x g .
0 — n ——  u : Gaussian

A : Poisson

" Maximum log-likelihood

= Gradient ascent to optimize

max log p(y | x; 0)

p(t+1) —_ p(t) 4 (y(,-) ~ By (X(f))) ()
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Summary

" The exponential family
= Motivation/Intuition

= Examples

" Generalized linear models (GLMs)
= Design ideas
= Workflow
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